

2014 YEAR 12 HALF-YEARLY

Mathematics Extension 2

General Instructions

- Reading time 5 minutes
- Working time 120 minutes
- Write using black or blue pen
- Board-approved calculators may be used
- All necessary working should be shown in every question
- Marks may be deducted for careless or badly arranged work
- Attempt all questions
- Start a new page for each question

Total marks – 70 Exam consists of 11 pages.

This paper consists of TWO sections.

Section 1 – Pages 4-6
Multiple Choice
Question 1-10 (10 marks)

Section 2 – Pages 7-10 Extended Response Question 11- 14 (60 marks)

Standard integrals provided on page 11

Section I - 10 marks

Allow about 15 minutes for this section

Use the multiple choice answer sheet for question 1-10

1. Which of the following shapes is the locus of the point *P* representing the complex number *z* moving in an Argand diagram such that

$$|z - 2i| + |z + 2i| = 6$$

- (A) A circle
- (B) A parabola
- (C) A hyperbola
- (D) An ellipse
- 2. What is the multiplicity of the root x = -1 of the equation $3x^5 5x^4 35x 27 = 0$?
 - (A) one
 - (B) two
 - (C) three
 - (D) four
- 3. In modulus argument form $-\sqrt{2}(1-i)$ is
 - (A) $2\left(\cos\left(\frac{3\pi}{4}\right) i\sin\left(\frac{3\pi}{4}\right)\right)$
 - (B) $2\left(\cos\left(\frac{3\pi}{4}\right) + i\sin\left(\frac{3\pi}{4}\right)\right)$
 - (C) $\cos\frac{\pi}{4} i\sin\frac{\pi}{4}$
 - (D) $-\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}$
- 4. If $y = \cos^{-1}(e^x)$, the expression for $\frac{dy}{dx}$ is
 - (A) -cosecy
 - (B) $-\tan y$
 - (C) $-\cot y$
 - (D) $-\sec y$

If α , β and γ are roots of the equation $x^3 + 5x^2 + 4 = 0$, then the cubic equation with roots α^2 , β^2 and γ^2 is

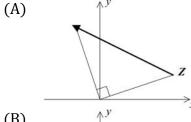
(A)
$$4x^3 + 5x^2 + 1 = 0$$

(B)
$$x^3 - 25x^2 - 40x - 16 = 0$$

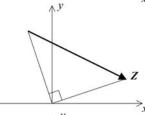
(C)
$$x^3 + 25x^2 + 40x + 16 = 0$$

(D)
$$x^3 + 25x^2 - 40x + 16 = 0$$

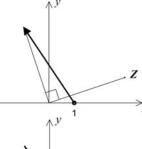
The equation of the normal to the hyperbola $x=2\sec\theta$, $y=\tan\theta$ at the point where $\theta=\frac{\pi}{4}$ is **6.**


(A)
$$\sqrt{2}x + y - 5 = 0$$

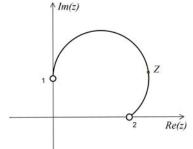
(B)
$$\sqrt{2}x + 2y - 2 = 0$$

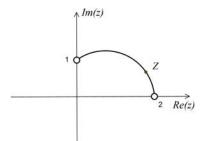

(C)
$$\sqrt{2}x - 2y - 2 = 0$$

(D)
$$\sqrt{2}x - y + 5 = 0$$

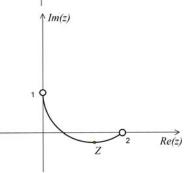

7. On an Argand diagram, point *Z* is shown to represent the complex number z. Which diagram below shows the vector that represents (1 - i)z?

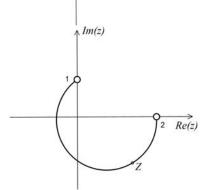
(B)


(C)


(D)

- **8.** Three of the six letters of the word **ROMARO** are selected and arranged in a row. How many different arrangements are possible?
 - (A) 120
 - (B) 30
 - (C) 42
 - (D) ${}^{6}P_{3} \times 3!$
- Given the hyperbola $\frac{x^2}{9} \frac{y^2}{16} = 1$, which of the following would be the equation of the asymptotes?
 - (A) $y = \pm \frac{3}{4}x$
 - (B) $y = \pm \frac{4}{3}x$
 - (C) $y = \pm \frac{16}{9}x$
 - (D) $y = \pm \frac{16}{9}x$
- **10.** The locus of *z* in the Argand plane where $\arg(z-2) \arg(z-i) = \frac{\pi}{3}$ is


(A)


(B)

(C)

(D)

End of Section I

$Section \ II-Extended \ Response$

Attempt questions 11-14. Show all necessary working.

Answer each question on a SEPARATE PAGE Clearly indicate question number.

Each piece of paper must show your BOS number.

All necessary working should be shown in every question.

Que	Question 11 (15 marks)	
(a)	Let $z = i - \sqrt{3}$ and $w = 1 - i$, find	
	(i) $\bar{z} + w$	1
	(ii) zw in modulus /argument form.	3
(b)	(i) Find all the complex numbers $z = a + ib$ such that $(a + ib)^2 = 8 + 6i$, where a, b are real numbers.	2
	(ii) Hence solve $z^2 + 2z(1+2i) - (11+2i) = 0$	2
(c)	Solve $x^4 + 4x^3 - 16x - 16 = 0$ given that it has a root of multiplicity 3	3
(d)	Find the equation of the locus of all z, such that $ z - 2 = Re(z)$.	2
(e)	For the hyperbola $xy = 12$, find its	
	(i) foci	1
	(ii) equations of directrices	1
	End of Question 11	

Que	estion 12 (15 marks)	Marks
a)	A nine member committee consists of 4 male students, 3 female students and 2 teachers. The committee meets around a circular table so that the male students sit together as a group, and so do the female students, but no female student sits next to a male student. (i) How many different arrangements are possible? (ii) One particular male student does not wish to sit next to one particular teacher. How many ways can this be arranged?	2 2
b)	The points represented by the complex number $z_1 = \sqrt{3} + i$ and two other complex numbers z_2 and z_3 , lie on the circumference of a circle with centre O and radius 2. These three points are vertices of an equilateral triangle. Find the complex numbers z_2 and z_3 in the form $a + ib$ where a and b are real.	2
(c)	Solve $z^4 - z^3 + 6z^2 - z + 15 = 0$ for z given that $z = 1 - 2i$ is a root of the equation.	2
(d)	The locus of z is represented by $ z - 1 = 1$ (i) Sketch the locus. (ii) Show that $ z^2 - z = z $ (iii) Show that $\arg(z - 1) = \frac{2}{3} \arg(z^2 - z)$.	1 1 2
(e)	The diagram shows points A , B and T marked on a circle. A tangent to the circle at T , KC is drawn such that BC is perpendicular to KC . TM is perpendicular to AB .	3
	Show that MC is parallel to AT .	
	End of Question 12	

	estion 13 (15 marks)	Marks
a)	Solve $ 3x^2 - 2x - 2 < 3x$	3
b)	Given that ω is a non-real root of the equation $z^5 = 1$ and that $\alpha = \omega + \omega^4$ is a root of the quadratic equation $x^2 + bx + c = 0$, where b and c are real.	
	(i) Prove that $1 + \omega + \omega^2 + \omega^3 + \omega^4 = 0$.	1
	(ii) Find the second root β of the equation $x^2 + bx + c = 0$ in terms of positive powers of ω .	1
	(iii) Find the values of the coefficients a and b .	2
	(iv) Deduce that the exact value of $\cos\frac{2\pi}{5} + \cos\frac{4\pi}{5} = -\frac{1}{2}$	2
(c)	The point $P(a\cos\theta, b\sin\theta)$ lies on $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. A line is drawn through the origin parallel to the tangent at P . The line meets the ellipse at Q and Q' . (i) Show that the equation of the tangent at P is $\frac{x\cos\theta}{a} + \frac{y\sin\theta}{b} = 1$ (ii) Show that the equation of QQ' is $xb\cos\theta + ya\sin\theta = 0$ (iii) Hence find the coordinates of Q and Q' (iv) Prove that the area of the $\Delta QPQ'$ is independent of the position of P .	2 1 1 2

a) (Given tha	$t\cos\theta+i\sin\theta\neq 1$, prove by mathematical induction that $1+cis\theta+cis2\theta+\cdots+cis(n\theta)=\frac{1-cis(n+1)\theta}{1-cis\theta}$ where $n\geq 0$, and $cis\theta=\cos\theta+i\sin\theta$	3
b)		A	
		z_1 Not to scale x	
I		x numbers z_1, z_2, z_3 represent vertices of an equilateral triangle	1
	(i) (ii)	Express $z_2 - z_1$ in terms of $z_3 - z_1$ Hence prove $z_1^2 + z_2^2 + z_3^2 = z_1 \cdot z_2 + z_2 \cdot z_3 + z_3 \cdot z_1$	3
	The points $P\left(cp,\frac{c}{p}\right)$ and $Q\left(cq,\frac{c}{q}\right)$, where, $ p \neq q $, lie on the rectangular hyperbola with equation $xy = c^2$.		
	(i)	Show that the equation of the tangent to the hyperbola $xy = c^2$ at the point $P\left(cp, \frac{c}{p}\right)$ is $x + p^2y = 2cp$	2
	(ii)	If the tangents at $P\left(cp, \frac{c}{p}\right)$ and $Q\left(cq, \frac{c}{q}\right)$ meet at the point $R(x_0, y_0)$, prove that $p+q=\frac{2c}{y_0}$ and $pq=\frac{x_0}{y_0}$	3
	(iii)	If the length of chord PQ is d units, show that $d^2 = c^2(p-q)^2 \left\{1 + \frac{1}{p^2q^2}\right\}$	1
	(iv)	If d remains fixed, deduce that the locus of R has equation $4c^2(x^2+y^2)(c^2-xy)=x^2y^2d^2$	2
		End of Question 14	

Yr. 12 Extension 2 - Half Yearly 2014 Solutions

Multiple choice

3. A
$$-\sqrt{2}(1-i) = -\sqrt{2} + \sqrt{2}i' = 2$$

 $modulus = \sqrt{(-\sqrt{2})^2 + (\sqrt{2})^2} = 2$ $avg = tan(-\frac{\sqrt{2}}{\sqrt{2}}) = \frac{3\pi}{4}$
 $\therefore z = 2(cos(\frac{3\pi}{4}) + isin(\frac{3\pi}{4})$

4. A (2sec
$$\theta$$
, tan θ) at $\theta = \overline{A}$ $a = 2 b = 1$

$$= (2sec \overline{A}, tan \overline{A}) = (2\overline{I_2}, 1)$$

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \cdot \frac{x^2}{4} - y^2 = 1 \cdot \frac{2x}{4} - 2y \cdot \frac{dy}{dx} = 0$$

$$\therefore m_{T} = \frac{2V\overline{Z}}{4x1} = \frac{V\overline{Z}}{2} \cdot m_{N} = -\frac{2}{V\overline{Z}} = -V\overline{Z} \cdot \frac{dy}{dx} = \frac{x}{4y}$$

$$\therefore eqn. of normal: y-1 = -V\overline{Z}(x-2V\overline{Z}) \cdot V\overline{Z}x + y - 5 = 0$$

5. B let
$$y = x^2$$
: $x = Vy$:: $P(x) = 0$:: $P(Vy) = 0$
: $(Vy)^3 + 5(Vy)^2 + 4 = 0$
 $yVy = -5y-4$:: $y^3 = (-5y-4)^2 = 25y^2 + 40y + 16$
: cubic equation is $y^3 - 25y^2 - 40y + 16 = 0$ or $x^3 - 25x^2 + 10x + 16 = 0$

6. C
$$y = \cos(e^x)$$
 : $e^x = \cos y$

$$\frac{dy}{dx} = \frac{-e^x}{VI - (e^x)^2} = \frac{-\cos y}{VI - \cos^2 y} = \frac{-\cos y}{\sin y} = -\cot y$$

8. C choose R,R and one of
$$0,M,A: {}^{3}C, \times \frac{3!}{2!} = 9$$
 choose $0,0$, and one of $R,M,A: 9$ arrange $R[D]M,A: {}^{4}P_{4} = 4! = 29$: $botal = 9 + 9 + 24 = 42$

9. B
$$\frac{y^{2}}{16} = \frac{\chi^{2}}{9} - 1$$
 $\frac{y^{2}}{16} = \frac{16}{9} - \frac{16}{\chi^{2}}$ is asymptote $\frac{y}{\chi} = \pm \frac{4}{3}$ if $y = \pm \frac{4}{3} \times 1$

10. A arg
$$(2-2)$$
 = $\frac{\pi}{3}$

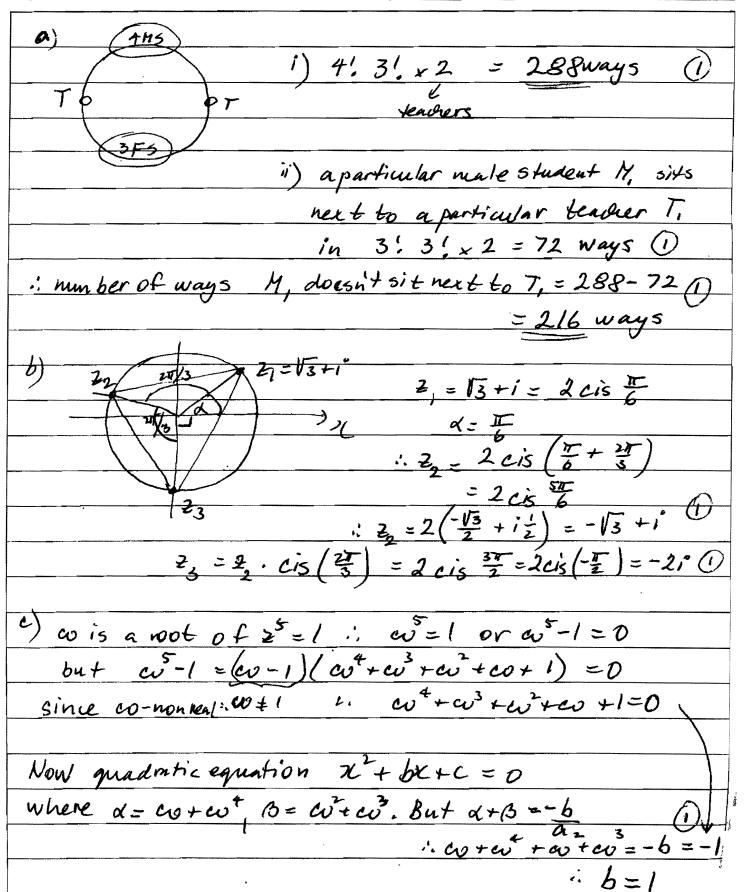
BOS#:

(a)
$$2 = i - \sqrt{3}$$
 $w = 1 - i$
(i) $2 + w = -\sqrt{3} - i + 1 - i = (-\sqrt{3} + 1) - 2i$

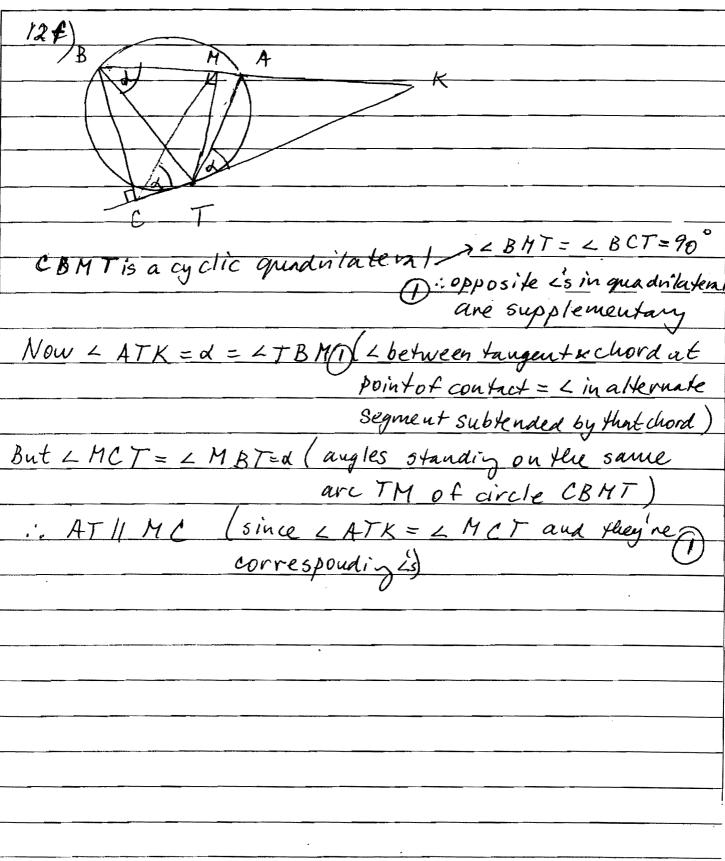
(ii)
$$z \cdot w = (-\sqrt{3} + i)(1 - i) = (-\sqrt{3} + 1) + i(1 + \sqrt{3})0/3$$

(OR) $|z \cdot w| = |-\sqrt{3} + i||1 - i|| = |2| \times |\sqrt{2}| = 2\sqrt{2}$
 $arg(z \cdot w) = arg(z) + arg(w) = \frac{5\pi}{6} + (-\frac{\pi}{4}) = \frac{7\pi}{12}$
 $i \cdot zw = 2\sqrt{2} \cdot cis^{\frac{7\pi}{12}}$

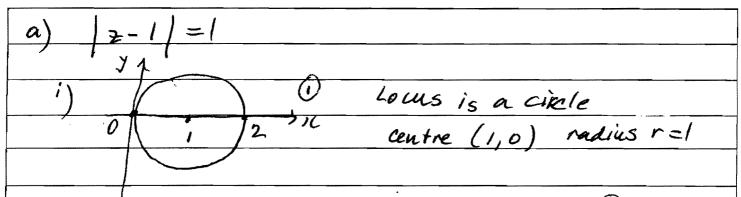
$$a^2-b^2+2i^2ab=9+6i^2$$

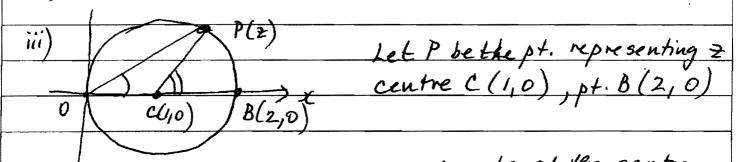

(1)
$$a = b$$
 (2) $ab = b$: $b = \frac{3}{a}$

$$\frac{1}{16}a^2 - \left(\frac{3}{a}\right)^2 = 8 \quad \frac{1}{16}a^4 - 8a^2 - 9 = 0$$


$$b = 1$$
 $b = -1$ $a = -3$ $b = 1$ $b = -1$ $a = -3$ $a =$

BOS#:__


(1b) ii) cout z= 2-i or -4-3i
c) $\chi^4 + 4x^3 - 16x - 16 = 0$
$let P(x) = x^4 + 4x^3 - 16x - 16$
$P'(x) = 4x^3 + 12x^2 - 16 = 4(x^3 + 3x^2 - 4)$
$P''(x) = 12x^2 + 24x = 0 = 12x(x+2)$
when $x = 0$, $x = -2$
but P(0) \$ 0 0 is not a root
$P(-2) = 0, P'(-2) = 0 \times P''(-2) = 0$
:. z=-2 is a root multiplicity 3 (1)
$\frac{1}{12} \left(x(4+4x^3-16x-16) \div (x+2)^3 = x-2 \right)$
multiplicity 3
a) $ z-2 = Re(z)$ let $z = x + iy$
$\therefore \chi + i^{\circ}y - 2 = \chi$
$\frac{1}{(\chi-2)^2+y^2}=\chi$
1
(x-2) + y = x
$\frac{x^2 - 4x + 4 + y^2 = x^2}{x^2 + x^2 + y^2} = \frac{x^2}{4x^2 + y^2} = \frac{x^2}{10 \text{ cus of } 2}$
i, y = 45C -4 :.
e) $34y = 12 = c^2 = a^2$. $12 = a^2$. $a = \sqrt{24} = 2\sqrt{6}$
e) $3ly = 12 = c^2 = \frac{a^2}{2}$. $12 = \frac{a^2}{2}$. $a = \sqrt{24} = 2\sqrt{6}$ $S, S(\pm a_1 \pm a)$. $S(+2\sqrt{6}, +2\sqrt{6})$, $S'(-2\sqrt{6}, -2\sqrt{6})$
directrices: $x + y = 2\sqrt{6}$ You may ask for extra writing paper if you need more space to answer question 11
$\frac{1}{2} \sqrt{\frac{1}{2}} = -2\sqrt{6}$
You may ask for extra writing paper if you need more space to answer question 11


$ 2c $ cont: $d \cdot B = \frac{c}{a}$
$\frac{1}{12} \left(\frac{1}{12} + \frac{1}{12} + \frac{1}{12} \right) = \frac{1}{12} + \frac{1}{$
since ci = ci · co=co): co + co + co + co = c = - (1)
$cv^2 = co^2 \cdot cv^2 = co$
: great equation is $x^2 + x - 1 = 0$
d) solve z4-z3+622-z+15=0 if z=1-2i is not
: weff. are real : 1+21° = = is not also
: coeff. are real : $1+2i^{\circ} = \frac{1}{2}$ is not also : quadratic factor is $\left[2-\left(1-2i\right)^{2}\left(1+2i\right)\right] = 2^{2}-22+5$
$now \left(2^{4}-2^{3}+62^{2}-2+15\right) \div \left(2^{2}-2+5\right) = 2^{2}+2+3$ $-\left(2^{4}-22^{3}+52^{2}\right)$
23+22-2+/S
$-(2^3-22^2+52)$
$\frac{32^2 - 62 + 15}{-(32^2 - 62 + 15)}$
0
: the other noots are solutions of 22+2+3=0
$\therefore z = \frac{-1 \pm 11}{2}$
: noots are: 1-2i 1+2i, - \(\frac{1}{2} \) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
e) $3x^2 - 2x - 2 + 13x$
$(x>0)$: $3x^2-2x-2+3x$ or $(x+0)$: $3x^2-2x-2+6-3x$ $3x^2-5x-2+0$ $3x^2+x-2+0$
$\frac{3x^{2}-5x-2-0}{(3x+1)(x-2)+0}$ $\frac{3x^{2}+x-2+0}{(3x+1)(x-2)+0}$
(3x-2)(x+1)=0
772X23
" Q < X < 2 \ Solutions > (-1 < X < 0)
Way may ask for over writing paper if you need more space to answer question 12

BOS#:_____

ii) $|z^2 - z| = |z(z-1)| = |z||z-1| = |z|x| = |z| \cdot skows$

Now LPCB = 2x LPCC (= double angle at circumsi)
but LPCC = arg z and LPCB = arg (z-1)

:, $arg(z-1) = 2 \cdot arg z$ []

Now $\frac{2}{3} arg(z^2-z) = \frac{2}{3} arg[z(z-1)] = \frac{2}{3} \left[argz + arg(z-1)\right]$ $= \frac{2}{3} \left[argz + 2 \cdot argz\right] = \frac{2}{3} \left[3argz\right] = 2argz = arg(z-1)$

b); since $2^{5}-1=(2-1)(2^{4}+2^{3}+2^{2}+2+1)$: roots of $2^{4}+2^{3}+2^{2}+2+1=0$ are amougst roots of $2^{5}-1=0$, where $2 \neq 1$.

:. noots are $z_1 = cis^{2} = cis^{2} = cis^{4} = cis^{$

136) ii) Now 24+23+2+2+1=[2-2,)(2-22)(2-23)(2-24)
= (2-2)(2-2)(2-2)(2-2)
$= (2-2)(2-2)(2-2)(2-2)$ $= (2^{2}-22\cdot Re2, H)(2^{2}-22\cdot Re2, H)$
$2^{t}+2^{3}+2^{2}+2+1=\left[2^{2}-22.\cos\frac{2\pi}{5}+1\right]\left[2^{2}-22.\cos\frac{4\pi}{5}+1\right]$
Now match up coefficients of 2
Now math up coefficients of $\frac{2\pi}{5}$ + $\left(-22.\cos\frac{4\pi}{5}\right)$
: 1 = -2 (cos = + cos + T)
$\frac{1}{1-\frac{1}{2}} = \frac{-2(\cos\frac{3\pi}{5} + \cos\frac{4\pi}{5})}{\cos\frac{4\pi}{5} + \cos\frac{4\pi}{5}}$
c) i) $\frac{\chi^2}{a^2} + \frac{y^2}{b^2} = 1 : \frac{2\chi}{a^2} + \frac{2y}{b^2} \cdot \frac{dy}{dx} = 0 : \frac{dy}{dx} = \frac{-b^2}{a^2} \cdot \frac{\chi}{y}$
$a^{2}b^{2}a^{2}b^{2}dx \qquad a^{2}\bar{y}$
:at P(acoso, bsino) m, = -b' acoso - bcoso ()
a bsing asing
: equation of tangent: y-bsin 0 = -bcost (x-a cost)
ysind sind = -coso + coso ()
$\frac{y \sin \theta}{b} = \frac{-\cos \theta}{a} \times + \cos^2 \theta$ $\frac{x \cos \theta}{b} + \frac{y \sin \theta}{a} = \cos^2 \theta + \sin^2 \theta = 1$
a to show
·
") 88 11 tangent at P : m = -6coso
and (0.0) < 00'
$0 + QQ^{1} : Y = -\frac{b\cos\theta}{a\sin\theta} \times I$
1. yasino = bcosox
:. 88 is: Xb cosp+ yasin 0 = 0
· · · · · · · · · · · · · · · · · · ·

$(3c) iii) \qquad (xbcos 0 + yasin 0 = 0 (i)$
$0, 0' \left(\frac{x^2}{a^2} + \frac{y^2}{b^2} \right)$
(1) 11 ya sint (2) y 2 sinto
(1) $\chi = -ya sin\theta$ (2) $\frac{y^2a^2sin^2\theta}{b^2cos^2\theta} + \frac{y^2}{b^2} = 1$
i. y sin 8 , y2 , y2 [sin 8 ,]
1000000000000000000000000000000000000
: y2 \[\frac{\sin^2 + \cos^2 \text{0}}{\cos^2 \text{0}} \] = \frac{b^2}{2} \cos^2 \text{0} \c
L costo
$-(+b\cos\theta)\frac{a\sin\theta}{b\cos\theta} = -a\sin\theta$
$\frac{\chi_{a,Q'} = -\frac{y \frac{a \sin \theta}{b \cos \theta}}{b \cos \theta} = -\frac{(+b \cos \theta) \frac{a \sin \theta}{b \cos \theta}}{-(-b \cos \theta) \frac{a \sin \theta}{b \cos \theta}} = -\frac{a \sin \theta}{a \sin \theta}$
- / 6cas
: Q (-asino, + beoso) Q'(+asino, -beoso) (1)
Area sqrq' = ± · QQ'xh
Q8 = 1 (2a sino) + (26 coso) = 2 a2sin 0 + 62050
h = perp. distance of QQ: xbcoso + yasin 0 = 0 from Placoso, bsino
1 - acost. beost + bsint.a. sint abl. lcos + sin't
$\sqrt{b^2\cos\theta + a^2\sin^2\theta} \qquad \sqrt{b^2\cos\theta + a^2\sin^2\theta}$
: Area sara = 1 [ab] Vhicos + bicos +
Constant
which is independent of position of P.

a) ster n=0: L45=1
1 Asi Victoria de la Companya de la
$\frac{RHS}{1-cis\theta} = 1$
: the statement is time for n=0.
STEPL: Assume that statement is true for n=t
ie. Heist + cis 20 + - + cis Ko = 1- cis (K+1)0
1-cis8
STET 3: NOW prove statement true for n= K+1 = 1-cis/k+1/0
45 = 14 cisO+. + cisk & + cis (K+1) = 1-cis(K+1) + cis(K+1)
assumption Cio
= 1-cis(K+1)0+ (1-ciso)(cis(K+1)0)
1-cist
= 1- cis(k+1)0 + cis(k+1)0 - ciso. cis(k+1)0
1-cist
=1-cis[0+(+1)0] = 1-cis(K+2)0 - RHS
1-cist 1-cist
: the statement is true for n= K+1 it it's true
for n=k, and since proven true for n=0
for n=k, and since proven true Apr n=0 : by math induction the state most is true for all integers h > 0.
for all integers 420.

6)	i	2, - 2,	= (2, -2,) cis 3	①	
7			=(2,-2,			
		7	()			

$$\frac{1}{12} = \frac{2}{2} - \frac{2}{12} = \frac{2}{12} \frac{2}{12} =$$

$$\frac{1 \cdot (z_{1}-z_{1})(z_{2}-z_{3})}{(z_{1}-z_{1})(z_{2}-z_{3})} = (z_{3}-z_{1})(z_{1}-z_{3}) = (z_{3}-z_{1})(z_{1}-z_{3})$$

$$\frac{z^{2}-z_{1}z_{2}+z_{3}z_{3}-z_{2}z_{3}}{(z_{1}+z_{1})(z_{2}+z_{3})} = z_{3}z_{1}-z_{3}z_{2}+z_{3}z_{3}+z_{3}+z_{3}z_{3}+z_{$$

eqn. of tangent at P is
$$(cp, \leq) : M_{7} = -\frac{c^{2}}{c^{2}p^{2}} = -\frac{1}{p^{2}}$$

eqn. of tangent at P is

$$y - \frac{C}{P} = -\frac{1}{P^{2}} (x - CP) \quad D$$

$$p^{2}(y - \frac{C}{P}) = -(x - CP)$$

$$p^{2}y - CP = -x + CP$$

$$x + x^{2}y = 2(x - CP)$$
if the properties of the propertie

$$\chi + p^2 y = 2cp$$
 (i) proven

i
$$x + p^{2}y = 2cp$$
 (i) proven

i) Similarly at $g(cq, \frac{c}{q})$ tayant is: $x + q^{2}y = 2cq$ (ii)

 $R(x_{0}y_{0})$ $(x_{0}+p^{2}y_{0}) = 2cp$ $(x_{0}-q^{2}y_{0}) = 2cq$
 $P(y_{0}-q^{2}y_{0}) = 2cp$ (1)

$$R(x_{0}y_{0}) = 2cp (1) = 2cp (1) = 1$$

$$P(y_{0} - q^{2}y_{0} = 2cp - 2cq (1)$$

$$(p-q)(p+q)y_0 = 2c(p-q)/-(p-q)$$

$$|if|p|+|q|$$
 ... $p-q+0$... $(p+q) \cdot y_0 = 2c$
... $p+q = \frac{2c}{y_0}$

14c) cout.
From (i) 16 = 2cp - pyo /= yo
$\frac{3\zeta_{o}}{y_{o}} = \frac{2cp}{y_{o}} = \frac{p^{2}y_{o}}{y_{o}} = \frac{p+q}{y_{o}}$ $\frac{3\zeta_{o}}{y_{o}} = \frac{2cp}{y_{o}} = \frac{p+q}{y_{o}}$ $\frac{3\zeta_{o}}{y_{o}} = \frac{2cp}{y_{o}} = \frac{p+q}{y_{o}} = \frac{p+q}{y_{o}$
$\frac{1}{y_0} = p_q (proven)$
iii) $PQ^{\perp} = d^{\perp}$ (since $PQ = d$)
$(d^{2}(c_{10}-c_{00})^{2}+(c_{10}-c_{10})^{2}$
= (1 P - Q + (q - P) P - Q = (q - P)
$= c^{2}(p-q)^{2}\left[1+\frac{1}{p^{2}q^{2}}\right]$
iv) but (p-q)2 = (p+q)2 - +pq
sub. this into (iii)
$d^{2} = e^{2} \left[p+q^{2} - 4pq \right] \left[1 + \frac{1}{p^{2}q^{2}} \right]$
also $(p+qr) = \frac{2c}{4p}$ and $pq = \frac{3co}{4p}$
$i. d^{2} = c^{2} \int \left(\frac{2c}{y_{0}}\right)^{2} - 4\left(\frac{2c}{y_{0}}\right)^{2} \int \left[1 + \frac{7}{(x_{0})^{2}}\right]^{2}$
$d^{2} = c^{2} \left[\frac{4c^{2}}{y_{o}^{2}} - \frac{4x_{o}}{y_{o}} \right] \left[+ \frac{y_{o}^{2}}{x_{o}^{2}} \right]$
$d^{2} = \frac{4c^{2}}{y_{0}^{2}} \left(c^{2} - \frac{1}{16}y_{0}\right) \left[\frac{x_{0}^{2} + y_{0}^{2}}{x_{0}^{2}}\right]$

Anesmon 14	Qu	estion	1	4
------------	----	--------	---	---

BOS#:	

14 C) iv) cout.
:. d'xo'yo'= 4c'(c'- 76.40) (xo't yo')
but R(x0, y0) E on the locus
:. locus of R(zo, yo) is:. dxy=4c(c-xy)x2+y2
:. 4c2 (x2+y2) (c2-xy) = x2y2d2.
(x + y)(c - xy) = x y x.
·